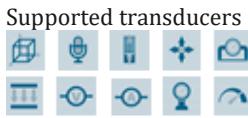


DIGITAL INDUSTRIES SOFTWARE

Simcenter SCADAS Mobile and Lab Four-channel V/ICP, Bridge and Dynamic Strain module with monitoring output

Simcenter VBDS4/2406/20240625


Product Information Sheet

Summary

VBDS4-RT input module

In a single Simcenter SCADAS Mobile slot, the.

The VBDS4-RT supports four-channel signal conditioning and signal processing for measuring signals from Wheatstone bridges or strain resistors. Its exceptionally high dynamic range and the support for dynamic strain measurements make the VBDS4-RT an ideal module in aero-engine testing.

FEATURES

- High speed, high throughput data acquisition for jet engine,- turbine,- and wind tunnel testing
- Compatible with full bridge, half bridge and quarter bridge configuration and dynamic strain measurements
- Bridge balancing through current injection.
- AC and DC coupled monitoring output with Raw, RMS and Peak data output
- Bridge completion for 120 Ω and 350 Ω bridges
- Built-in shunt calibration
- Piezoelectric ICP sensor support
- TEDS CLASS 1 and 2 support

VBDS4-RT input module

In a single Simcenter SCADAS Mobile slot, the.

The VBDS4-RT supports four-channel signal conditioning and signal processing for measuring signals from Wheatstone bridges or strain resistors. Its exceptionally high dynamic range and the support for dynamic strain measurements make the VBDS4-RT an ideal module in aero-engine testing.

Wheatstone bridge measurements

In Wheatstone bridge mode the VBDS4-RT supports full bridge, half bridge and quarter bridge configurations under full software control. Bridge completion for 120 Ω and 350 Ω bridges is included. Automatic bridge balancing using the proven current injection technique compensates for bridge unbalance without changing the bridge sensitivity while reducing bridge non-linearity to a minimum. Highly accurate 100 k Ω resistor, connected via shunt and sense lines to the bridge, supports shunt calibration.

Dynamic strain measurements

To measure signals from strain resistors the VBDS4-RT supports balanced constant current supply that provides improved common mode rejection. Combined with AC-coupled input, for single strain gage measurements using only two or four wire configurations, it allows measurement of dynamic strain with optimum signal to noise ratio. Fail-safe operation even when one side of a strain gage is accidentally short-circuited to ground (e.g. due to cable

damage). Bridge supply current can be set individually for each channel.

Piezoelectric ICP sensor support

The VBDS4-RT supports wide range of current-fed piezoelectric ICP sensors such as accelerometers or microphones.

Transducer Electronic Data Sheet (TEDS)

The VBDS4-RT supports IEEE1451.4 TEDS standard for ICP sensors (Class 1) and for bridge sensors (Class 2).

EtherCAT support

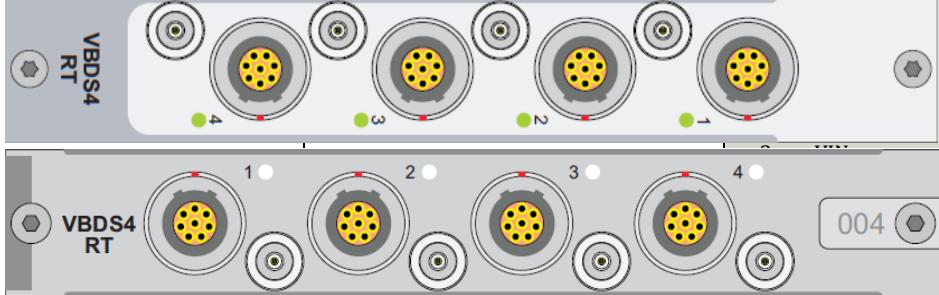
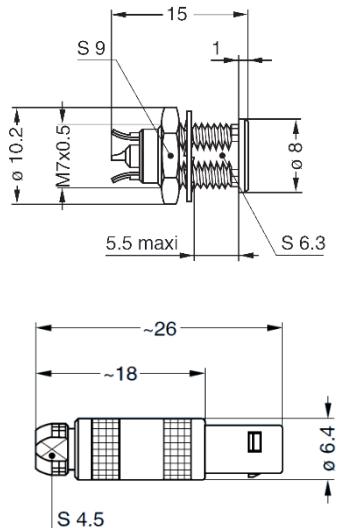
EtherCAT is a real-time network used in test benches or automation applications which require short data update times (low latency) with ultra-low communication jitter for synchronization purposes.

Monitoring output

Corresponding to each input channel a monitoring output is available through grounded CAMAC connectors. The monitoring output provide selectable RAW, RMS and peak modes.

Product Information Sheet

General information	VBDS4-RT specifications
Product name	SCM-VBDS4-RT, SCL-VBDS4-RT
Description	Simcenter SCADAS 4 channel V/ICP/Bridge and Dynamic strain module with monitoring output and with EtherCAT support.
Inputs	Four (4) time-synchronous bridge or V/ICP inputs
Input ranges differential input	± 10 V, ± 3.16 V, ± 1 V, ± 0.316 V, ± 0.1 V, ± 31.6 mV, ± 10 mV, ± 3.16 mV
Input ranges single ended V/ICP input	± 10 V, ± 3.16 V, ± 1 V, ± 0.316 V
Digital interface	EtherCAT write, (requires ESO64 module)
Outputs	AC or DC coupled monitoring output on each channel, with raw data or peak and RMS output.
Transducer connector	Four (4) 8 pin LEMO 1B connector for sensor input Four (4) CAMAC connector for monitoring output
Supported transducers	Full, half and quarter bridge configurations, including bridge completion for 120Ω and 350Ω . Support of dynamic strain measurements Wheatstone bridge-based transducers (force, pressure, torque, acceleration) AC or DC coupled sensors Voltage and ICP sensors Sensors that require 14V power supply
A/D Converter	
Max. sampling rate	204.8 kHz, can be downsampled in steps of 2 and 2.5
Max. bandwidth	88 kHz
ADC Architecture	24 bit Sigma Delta ADC
Coupling	DC, AC in both single-ended and differential modes
Filter	
High Pass Filter	Software selectable high pass filter with 0.5 Hz (single ended mode) and 1Hz (differential input mode) cut off frequency
AC Coupling	Single ended mode: 0.048 Hz $\pm 6\%$ (Boost function for fast settling time) Differential input mode: 1Hz $\pm 2\%$
Decimation filter	Reduces bandwidth prior to signal processing; bandwidth can be down-sampled in steps of 2 and 2.5.
Analog anti-alias filter	4-pole Equal Time Delay filter with 164 kHz cut-off frequency and 0.01 dB flatness guaranteed. Alias suppression of better than 105 dB provides an alias free bandwidth of 92 kHz
Transducer identification	
TEDS	TEDS class 1 (ICP sensors) and TEDS class 2 (Bridge sensors) supported according to IEEE 1451.4 Maximum sensor cable length is 80 m
Power	



Power consumption	7 W available for the module and the sensors (during normal operation, no overload and ICP supply switched on).															
Power feedback	<p>LED on the module front panel, providing information on connection, power status and any sensor supply overload/underload. During system booting and startup, the LED on channel 1 will be used to indicate module status (active) using a different LED color and/or blinking pattern.</p> <table> <tr> <td data-bbox="518 551 633 576">LED Modes</td> <td data-bbox="931 551 1008 576">Alarm</td> </tr> <tr> <td data-bbox="518 582 633 608">V/ICP: Green</td> <td data-bbox="931 582 1057 608">Overload: Red</td> </tr> <tr> <td data-bbox="518 614 633 639">Bridge: Blue</td> <td data-bbox="931 614 1344 639">Supply current overload: Yellow/Red flashing</td> </tr> <tr> <td data-bbox="518 646 698 671">Dynamic strain: Blue</td> <td data-bbox="931 646 1380 671">Open loop in dynamic strain: Yellow/Red flashing</td> </tr> <tr> <td data-bbox="518 677 780 703">Bridge mode balancing: Cyan</td> <td data-bbox="931 677 1057 703"></td> </tr> <tr> <td data-bbox="518 709 829 734">Bridge mode shunt active: Magenta</td> <td data-bbox="931 709 1057 734"></td> </tr> <tr> <td data-bbox="518 741 763 766">TEDS reading: Yellow flash</td> <td data-bbox="931 741 1057 766"></td> </tr> </table>		LED Modes	Alarm	V/ICP: Green	Overload: Red	Bridge: Blue	Supply current overload: Yellow/Red flashing	Dynamic strain: Blue	Open loop in dynamic strain: Yellow/Red flashing	Bridge mode balancing: Cyan		Bridge mode shunt active: Magenta		TEDS reading: Yellow flash	
LED Modes	Alarm															
V/ICP: Green	Overload: Red															
Bridge: Blue	Supply current overload: Yellow/Red flashing															
Dynamic strain: Blue	Open loop in dynamic strain: Yellow/Red flashing															
Bridge mode balancing: Cyan																
Bridge mode shunt active: Magenta																
TEDS reading: Yellow flash																
Bridge supply	<p>Symmetrical bridge supply can be selected from 1 V (± 0.5 V) to 10 V (± 5 V). The negative bridge supply voltage sense line and the tracked voltage compensation for the positive bridge supply voltage guarantee nominal bridge supply voltage independent from cable length.</p>															
Bridge current supply	<p>The module have a balanced current supply that can be set from 2.5 mA up to 25 mA with an accuracy of ± 0.1 % for two wire or four wire connection; supported strain gauges have a resistance of 120 Ω or 350 Ω (metal foil) or from 40 Ω to 400 Ω (semiconductor)</p>															
ICP sensor supply	<p>Strain gauge resistance</p> <table> <tr> <td data-bbox="518 1036 866 1062">120 Ω or semiconductor 40 Ω - 200 Ω</td> <td data-bbox="992 1036 1057 1062">25 mA</td> </tr> <tr> <td data-bbox="518 1089 866 1115">350 Ω or semiconductor above 200 Ω</td> <td data-bbox="992 1089 1057 1115">20 mA</td> </tr> </table> <p>Maximum current</p> <table> <tr> <td data-bbox="992 1036 1160 1062">120 Ω or semiconductor 40 Ω - 200 Ω</td> <td data-bbox="992 1089 1057 1115">25 mA</td> </tr> <tr> <td data-bbox="992 1142 1160 1167">350 Ω or semiconductor above 200 Ω</td> <td data-bbox="992 1195 1057 1220">20 mA</td> </tr> </table> <p>Between 9 mA and 5 mA over the Simcenter SCADAS Mobile operating temperature range.</p>		120 Ω or semiconductor 40 Ω - 200 Ω	25 mA	350 Ω or semiconductor above 200 Ω	20 mA	120 Ω or semiconductor 40 Ω - 200 Ω	25 mA	350 Ω or semiconductor above 200 Ω	20 mA						
120 Ω or semiconductor 40 Ω - 200 Ω	25 mA															
350 Ω or semiconductor above 200 Ω	20 mA															
120 Ω or semiconductor 40 Ω - 200 Ω	25 mA															
350 Ω or semiconductor above 200 Ω	20 mA															
Active sensor supply	<p>14 V DC; maximum current is upto two triaxial accelerometers 30mA or 4 active sensors up to 20mA each.</p> <p>Because the power budget in a frame is limited to 160mA/module (90mA/channel) for the 9 slots frame (SCM2E09) and 200 mA/module (130mA/channel) for the five slots frame (SCM2E05).</p>															
Activated channels	<table> <thead> <tr> <th data-bbox="649 1320 747 1345">SCM2E09</th> <th data-bbox="1160 1320 1258 1345">SCM2E05</th> </tr> <tr> <th data-bbox="649 1351 768 1377">Current limit</th> <th data-bbox="1160 1351 1279 1377">Current limit</th> </tr> </thead> <tbody> <tr> <td data-bbox="687 1383 731 1408">90</td> <td data-bbox="1214 1383 1241 1408">130</td> </tr> <tr> <td data-bbox="687 1415 731 1440">45</td> <td data-bbox="1214 1415 1241 1440">65</td> </tr> <tr> <td data-bbox="687 1446 731 1472">30</td> <td data-bbox="1214 1446 1241 1472">40</td> </tr> <tr> <td data-bbox="687 1478 731 1503">30</td> <td data-bbox="1214 1478 1241 1503">30</td> </tr> </tbody> </table>		SCM2E09	SCM2E05	Current limit	Current limit	90	130	45	65	30	40	30	30		
SCM2E09	SCM2E05															
Current limit	Current limit															
90	130															
45	65															
30	40															
30	30															
Input impedance																
Single ended mode	1M Ω 220pF															
ICP mode (AC)	523 K Ω 220pF															
Bridge mode (DC)	3 M Ω 500pF															
Slew rate																
V/ICP (single ended)	20V/ μ s															
Differential input	20V/ μ s															

Noise and distortion - better than			
Peak-to-peak noise (1/f)	Better than 0.4 μ V max. between 0.1Hz and 10Hz in \pm 100 mV input range		
Signal to noise ratio (SNR)	Differential input (typical)	Single ended input (typical)	
\pm 10 V	110 dB	110 dB	
	105 dB		
	100 dB		
	90 dB		
	80 dB		
	70 dB		
	60 dB		
	Measured between 20Hz to 20KHz, with 32k block size, 16 averages		
Common mode rejection (CMMR)	Differential input (typical)	Single ended input (typical)	
\pm 10 V	90 dB	-	
	110 dB		
	115 dB		
Spurious Free Dynamic Range (SFDR)	Differential input (typical)	Single ended input (typical)	
\pm 10 V	150 dB	150 dB	
	145 dB		
	140 dB		
	130 dB		
	120 dB		
	110 dB		
	100 dB		
	Between 20Hz and 20kHz, measured with block size of 51200 and 1Hz bins, Auto Power Spectrum after 16 averages		
Crosstalk	Differential input (typical)	Single ended input (typical)	
\pm 10 V, \pm 3.16 V, \pm 1 V, \pm 0.316 V, \pm 0.1 V, \pm 31.6 mV, \pm 10 mV, \pm 3.16 mV	130 dB	120 dB	

	Tested at 1.5kHz frequency, between any two channels		
Total Harmonic Distortion (THD)	Differential input (typical)	Single ended input (typical)	
$\pm 10 \text{ V}, \pm 3.16 \text{ V}$	80 dB	80 dB	
	100 dB	100 dB	
	105 dB	105 dB	
	95 dB	-	
	100 dB	-	
	At 1 kHz frequency, 25.6 kHz bandwidth, measured with a block size of 8192 Hz		
Amplitude Accuracy	Differential input	Single ended input	
	At 1 kHz better than +/- 0.1% at 23 °C		
Residual Offset	Differential input	Single ended input	
	Better than 0.1% at 22°C ± 2°C		
Gain drift at SCADAS operating temperature range	Differential input (typical)	Single ended input (typical)	
$\pm 10 \text{ V}$	19 ppm/°C	18 ppm/°C	
	13 ppm/°C		
	19 ppm/°C		
$\pm 3.16 \text{ V}$	18 ppm/°C	-	
	19 ppm/°C	-	
Bridge supply drift	Differential input (typical)	Single ended input (typical)	
$1 \text{ V} (\pm 0.5 \text{ V}), 2.5 \text{ V} (\pm 1.25 \text{ V}), 5 \text{ V} (\pm 2.5 \text{ V}), 10 \text{ V} (\pm 5 \text{ V})$	5 ppm/°C	-	
Bridge supply accuracy	0.1%		
Offset drift	Differential input (typical)	Single ended input (typical)	
$\pm 10 \text{ V}$	6 $\mu\text{V}/\text{°C}$	6 $\mu\text{V}/\text{°C}$	
	2 $\mu\text{V}/\text{°C}$	2 $\mu\text{V}/\text{°C}$	
	3 $\mu\text{V}/\text{°C}$	0.6 $\mu\text{V}/\text{°C}$	
	0.3 $\mu\text{V}/\text{°C}$	0.3 $\mu\text{V}/\text{°C}$	
	0.2 $\mu\text{V}/\text{°C}$	-	

	± 10 mV ± 3.16 mV													
Phase match between any two channels (at 10 kHz)	Differential input (better than)		Single ended input (better than)											
± 10 V, ± 3.16 V, ± 1 V, ± 0.316 V	0.45°		0.25°											
± 0.1 V, ± 31.6 mV, ± 10 mV, 3.16 mV	3°		0.45°											
Strain gauge and Wheatstone bridge conditioning														
Conditioning	Full bridge - 4 wires - 5 wires with sense lines Half bridge - 3 wires - 4 wires with sense lines Quarter bridge - 2 and 3 wires													
	120 $\Omega \pm 0.02$ % and 350 $\Omega \pm 0.02$ % (with 1 ppm/k) for quarter bridges													
	Shunt calibration by 100 k Ω (± 0.12 %) shunt resistor between the negative bridge supply voltage sense line and the shunt sense line provides a simulated strain of 599 μ strain (120 Ω bridge) or 1744 μ strain (350 Ω bridge)													
	DC bridge mode <table border="1" style="margin-left: auto; margin-right: auto;"> <tr> <th></th> <th>Full (1/1) bridge</th> <th>Half (1/2) bridge</th> <th>Quarter (1/4) bridge</th> </tr> <tr> <td>Selectable supply with 120 Ω</td> <td>0 V 1.25 V 2.5 V -</td> <td>0 V 1.25 V 2.5 5V</td> <td>0 V 1.25 V 2.5 5V</td> </tr> <tr> <td>Selectable supply with 350 Ω</td> <td>0 V 1.25 V 2.5 V 5 V -</td> <td>0 V 1.25 V 2.5 V 5 V 10 V</td> <td>0 V 1.25 V 2.5 V 5 V 10 V</td> </tr> </table>				Full (1/1) bridge	Half (1/2) bridge	Quarter (1/4) bridge	Selectable supply with 120 Ω	0 V 1.25 V 2.5 V -	0 V 1.25 V 2.5 5V	0 V 1.25 V 2.5 5V	Selectable supply with 350 Ω	0 V 1.25 V 2.5 V 5 V -	0 V 1.25 V 2.5 V 5 V 10 V
	Full (1/1) bridge	Half (1/2) bridge	Quarter (1/4) bridge											
Selectable supply with 120 Ω	0 V 1.25 V 2.5 V -	0 V 1.25 V 2.5 5V	0 V 1.25 V 2.5 5V											
Selectable supply with 350 Ω	0 V 1.25 V 2.5 V 5 V -	0 V 1.25 V 2.5 V 5 V 10 V	0 V 1.25 V 2.5 V 5 V 10 V											
	100 k Ω (± 0.12 %) resistor across all bridge arms													
	Via application software													
Monitoring output														
Description	Each input channel can be configured to operate through D/A converter as a monitoring output channel, providing RAW, RMS and peak data.													

None	Monitoring output is not sending out data								
Raw	Data output provides 10 V scaled signal output.								
Broadband RMS	Output provides moving averaged output with 100 msec time constant.								
Peak	Instantaneous output with a 10 msec attack and 100 msec decay time								
Coupling	AC or DC								
Output voltage	±10V								
Output latency	<table> <thead> <tr> <th>Bandwidth</th> <th>Latency</th> </tr> </thead> <tbody> <tr> <td>25.6 kHz</td> <td>1.26 ms</td> </tr> <tr> <td>51.2 kHz</td> <td>626 µs</td> </tr> <tr> <td>102.4 kHz</td> <td>320 µs</td> </tr> </tbody> </table>	Bandwidth	Latency	25.6 kHz	1.26 ms	51.2 kHz	626 µs	102.4 kHz	320 µs
Bandwidth	Latency								
25.6 kHz	1.26 ms								
51.2 kHz	626 µs								
102.4 kHz	320 µs								
Protection									
Input protection	All input pins are protected against ±40 V overvoltage (without damage). Other pins (supply, sense) are not protected against overvoltage.								
Sensor check	ICP and Bridge sensor check for open loop and short circuit detection. Detection threshold depends on bridge supply voltage, quantization errors and tolerances on electronic components. The detection threshold is lower than 0.4mA. Overload (prior to decimation). Power overload: channel power exceeded (per channel), module power exceeded (all channels exceeding module power)								
ESD protection	According to EN61000-4-2, level 2 and ISO10605								
EMC protection	Comply with CE-EMC directive, when installed in a SCADAS Mobile frame								
Overload detection and indication	Analog overload detection at the input is combined with digital overload detection after the ADC; Overloads are indicated on the front panel LED and transmitted to the host.								
Error detection methods	Error	LED Indication, effect on the module							
	Signal overload	RED, N/A							
	ICP broken cable	RED/YELLOW, N/A							
	ICP short circuit	RED/YELLOW, N/A							
	Bridge or active sensor broken cable	RED/YELLOW, N/A							
	Bridge/Active Sensor power overload	RED/YELLOW, Bridge supply or active sensor supply is switched off							
	Module power overload	WHITE (*) Bridge supply or active sensor supply is switched off *Note: in case of power overload, the first channel causing the overload and all subsequent channels will have the same LED indication							
Shock protection	MIL-STD-810F								
Vibration protection	MIL-STD-810F (2-2000Hz random, 7.7grms) 60 gpk applying an 11 ms saw tooth shock pulse, three shock per direction;								
Ambient operating temperature range	-20 °C to +55 °C								

Storage temperature range	-20 °C to +70 °C	
Housing		
Dimensions	1 Simcenter SCADAS slot (129.1x20.10x2.75mm)	
Connector and pinning layout	<p>Connector type: LEMO EGB.1B.308.CLVY</p> <p>Mating connector:</p> <p>LEMO FGB.1B.308.CLAD62 solder connector LEMO FGB.1B.308.CLCD62 crimp contact connector can be ordered as an option</p> <p>Chassis = Analog Ground</p>	
Monitoring output connector layout		<p>Connector type:</p> <p>CAMAC Chassis: ERN.00.250.CTL</p> <p>Mating connector: FFA.00.250.CTAC29</p>

SCL-VBDS4-RT

SCM-VBDS4-RT

Ordering Information:

Support of Simcenter SCADAS Frames and Modules may be restricted in specific Simcenter Testlab application workbooks.

Please check with your local representative for full details.

SCM-VBDS4-RT:

Simcenter SCADAS Mobile EtherCAT compatible 4-channel V/ICP, Bridge and dynamic strain conditioner

SCL-VBDS4-RT: Simcenter SCADAS Lab EtherCAT compatible 4-channel V/ICP,

Bridge and dynamic strain conditioner

Package includes 4 input channel mating connectors and 4 monitoring output CAMAC to BNC cables of 0.5m